Paper

81.J Wang, R Sheng, J Xiao, L Lu, Yh Peng, D Gu, W Xiao*, Matched Redox Kinetics on Triazine-Based Carbon Nitride/Ni(OH)2 for Stoichiometric Overall Photocatalytic CO2 Conversion, Small, 2024.02, 2309707. Link

80. J Cao, SX Jing, HW Wang, WY Xu, ME Zhang, JX Xiao, YH Peng, XH Ning*, ZJ Wang*, W Xiao*, Pure and Metal-confining Carbon Nanotubes through Electrochemical Reduction of Carbon Dioxide in Ca-based Molten Salts, Angew. Chem. Int. Ed. 2023,62, e202306877. Link

79. J Wang, R Sheng, D Gu*, YH Peng, JX Xiao, YJ Shen, W Xiao*, Modulation of Excitonic Confinement of TiO2 in Molten Salts for Overall CO2 Photoreduction, Chinese J. Chem. 2023, 41, 1185-1190. Link

78. J. Wang, Yh Peng*, W Xiao*,Photocatalytic Nonoxidative Coupling of Methane to Ethylene over Carbon-doped ZnO/Au Catalysts,Sci. Chi. Chem. 2023, 66, 3252–3261,DOI: 10.1007/s11426-023-1766-8. Link 

77. SX Jing, R Sheng, XX Liang, D Gu, YH Peng, JX Xiao, YJ Shen, D Hu, W Xiao*, Overall Carbon-neutral Electrochemical Reduction of CO2 in Molten Salts using a Liquid Metal Sn Cathode. Angew. Chem. Int. Ed. 2023, 62,  e202216315. Link


76. SX Jing, JX Xiao, YJ Shen, B Hong, D Gu, W Xiao*, Silicate-Mediated Electrolytic Silicon Nanotube from Silica in Molten Salts. Small 2022, 18, 2203251.Link


75. JT Zhang, MY Wang,* TT Wan, HT Shi, AJ Lv, W Xiao,* SQ Jiao,* Novel (Pt-Ox)-(Co-Oy) Non-Bonding Active Structures on Defective Carbon from Oxygen-Rich Coal Tar Pitch for Efficient HER and ORR. Adv. Mater. 2022, 34, 2206960.  Link


74. MY Wang, HD Jiao, ZH Pu, B Hong, JB Ge, W Xiao,* SQ Jiao,* Ultra-high temperature molten oxide electrochemistry. Angew. Chem. Int. Ed. 2022, e202206482. Link


73. PY Meng, J Huang, ZH Yang, F Wang, T Lv, J Zhang, CP Fu*, W Xiao*, A Low-cost and Air-Stable Rechargeable Aluminum-Ion Battery. Adv. Mater. 202234, 2106511. Link


72. M Jiang, CP Fu,* PY Meng, JM Ren, J Wang, JF Bu, AP Dong,* J Zhang, W Xiao,* BD Sun, Challenges and Strategies of Low-cost Aluminum Anodes for High-performance Al-based Batteries, Adv. Mater. 202234, 2102026. Link


71. W.Weng, JX Xiao, YJ Shen, XX Liang, T Lv, W Xiao*, Molten Salt Electrochemical Modulation of Iron-Carbon-Nitrogen for Lithium-Sulfur Batteries. Angew. Chem. Int. Ed. 2021, 60, 24905. Link


70. ZY Fan, W Xiao*, Electrochemical splitting of methane in molten salts to produce hydrogen. Angew. Chem. Int. Ed. 2021, 60, 7664. Link


69. XX Liang, JX Xiao, W Weng, W Xiao*, Electrochemical Reduction of Carbon Dioxide and Iron Oxide in Molten Salts to Fe/Fe3C Modified Carbon for Electrocatalytic Oxygen Evolution. Angew. Chem. Int. Ed. 2021, 60, 2120. Link


68. J Wang, JX Xiao*, YJ SH, XX Liang, T Lv, W Xiao*,A molten-salt electrochemical biorefinery for carbon-neutral utilization of biomass. J. Mater. Chem. A, 2021,9, 27442-27447. Link



67. ZY Fan, W Weng, J Zhou, D Gu, W Xiao*, Catalytic decomposition of methane to produce hydrogen: a review. J. Energy Chem. 2021, 58, 415-430. Link (ESI Highly Cited Paper)


66. D Pang, W Weng, J Zhou, D Gu, W Xiao*, Controllable conversion of rice husks to Si/C and SiC/C composites in molten salts. J. Energy Chem. 2021, 55, 102-107. Link (ESI Highly Cited Paper)


65. SX Jing, MY Wang*, W Xiao*, Electrochemical conversion of carbon dioxide in molten salts: In-situ and beyond. J. Energy Chem. 2022, 64, 404-405. Link


64. HS Xiao, H Zhu, W Weng, KZ Li,  W Li*, W Xiao*,Electrochemical fixation of CO2 over a Mo plate to prepare a Mo2C film for electrocatalytic hydrogen evolution. Mater. Chem. Front., 2021,5, 4963-4969. Link


63. T Lv, JX Xiao*, W Weng, W Xiao*, Electrochemical Fixation of Carbon Dioxide in Molten Salts on Liquid Zinc Cathode to Zinc@Graphitic Carbon Spheres for Enhanced Energy Storage. Adv. Energy Mater. 2020, 10, 2002241. Link



62. W Weng, SB Wang, W Xiao*, XW Lou*, Direct Conversion of Rice Husks to Nanostructured SiC/C for CO2 Photoreduction. Adv. Mater. 2020, 32, 2001560. Link


61. W Weng, JR Yang, J Zhou, D Gu, W Xiao*, Template-Free Electrochemical Formation of Silicon Nanotube from Silica. Adv. Sci. 2020, 2001492. Link


60. J Zhou, HS Xiao, W Weng*, D Gu, W Xiao*, Interfacial confinement of Ni-V2O3 in molten salts for enhanced electrocatalytic hydrogen evolution. J. Energy Chem. 2020, 50, 280-285. (Cover paperLink


59. J Zhou, DD Nie, XB Jin, W Xiao*, Controllable nitridation of Ta2O5 in molten salts for enhanced photocatalysis. Int. J. Miner. Metall. Mater. 2020, 27, 1703-1710. Link


58. W Weng, BM Jiang, Z Wang, W Xiao*, In situ electrochemical conversion of CO2 in molten salts to advanced energy materials with reduced carbon emissions. Sci. Adv. 2020, 6, eaay9278. Link


57. W Weng, J Zhou, D Gu, W Xiao*, Thermoelectrochemical formation of Fe/Fe3C@hollow N-doped carbon in molten salts for enhanced catalysis. J. Mater. Chem. A, 2020, 8, 4800-4806. Link


56. T Lv, W Weng, J Zhou, D Gu*, W Xiao*, Effects of K and Mn promoters over Fe2O3 on Fischer-Tropsch synthesis. J. Energy Chem., 2020, 47, 118-127. Link


55. CF Zhong, W Weng, XX Liang, D Gu, W Xiao*, One-step molten-salt synthesis of anatase/rutile bi-phase TiO2@MoS2 hierarchical photocatalysts for enhanced solar-driven hydrogen generation. Appl. Surf. Sci., 2020, 507, 145072. Link


54. JR Yang, W Weng, W Xiao*, Electrochemical synthesis of ammonia in molten salts. J. Energy Chem., 2020, 43, 195–207. Link


53. XX Liang,W Weng,a D Gub, WXiao*a, Nickel Based Oxides Film Formed in Molten Salts for Efficient Electrocatalytic Oxygen Evolution. J. Mater. Chem. A, 2019,7, 10514-10522. Link


52. W Weng, C Zeng, W Xiao*, In Situ Pyrolysis Concerted Formation of Si/C Hybrids during Molten Salt Electrolysis of SiO2@Polydopamine. ACS Appl. Mater. Interfaces., 2019, 11, 9156-9163.  Link


51. W Weng, W Xiao*, Electrodeposited Silicon Nanowires from Silica Dissolved in Molten Salts as a Binder-Free Anode for Lithium-Ion Batteries. ACS Appl. Energy Mater., 2019, 2, 804−813.  Link


50. W Weng, LZ Tang, W Xiao*, Capture and electro-splitting of CO2 in molten salts. J. Energy Chem., 2019, 28, 128-143.  Link


49. C Zeng, W Weng, T Lv, W Xiao*, Low-temperature assembly of ultrathin amorphous MnO2 nanosheets over Fe2O3 spindles for enhanced lithium storage. ACS Appl. Mater. Interfaces., 2018, 10, 30470-30478.  Link


48. T Lv, C Peng, H Zhu, W Xiao*, Heterostructured Fe2O3@SnO2 core–shell nanospindles for enhanced Room-temperature HCHO oxidation. Appl. Surf. Sci., 2018, 457, 83-92.  Link


47. JH Fan,DD Tang, XH Mao,H Zhu, W Xiao*, DH Wang*, An Efficient Electrolytic Preparation of MAX-Phased Ti-Al-C. Metall. and Mater. Trans. B, 2018, 49(5), 2770–2778.  Link


46. N Li, J Zhou, ZQ Sheng, W Xiao*, Molten salt-mediated formation of g-C3N4-MoS2 for visible-light-driven photocatalytic hydrogen evolution. Appl. Surf. Sci., 2018,430, 218-224. Link


45. ZG Chen, BW Deng, KF Du, XH Mao, H Zhu, W Xiao*, DH Wang*, Flue-Gas-Derived Sulfur-Doped Carbon with Enhanced Capacitance. Adv. Sustainable Syst., 2017, 1, 1700047. Link 170620-2


44. J Zhou, LF Qin, W Xiao*, C Zeng, N Li, T Lv, H Zhu*, Oriented Growth of Layered-MnO2 Nanosheets over α-MnO2 Nanotubes for Enhanced Room-temperature HCHO Oxidation. Appl. Catal. B-Environ., 2017, 207, 233-243. Link

MnO2


43. J Wang, XM Ge, ZL Liu, L Thia, Y Yan, W Xiao*, X Wang*. Heterogeneous Electrocatalyst with Molecular Cobalt Ions Serving as the Center of Active Sites, J. Am. Chem. Soc., 2017, 139 (5), 1878–1884. Linkja-2016-10307a_0006


42. J Zhou, Y Zhao, LF Qin, C Zeng, W Xiao*, Hollow structured CoSn(OH)6-supported Pt for effective room-temperature oxidation of gaseous formaldehyde, Funct. Mater. Lett., 2016, 09 (06), 1642009. Link


41. BH Lu, LY Hu, HY Yin, W Xiao*, DH Wang*. One-step molten salt carbonization (MSC) of firwood biomass for capacitive carbon. RSC Adv., 2016,6, 106485-106490. Link onestep


40. W Xiao, J Zhou, L Yu, DH Wang*, XW Lou*, Electrolytic Formation of Crystalline Silicon/Germanium Alloy Nanotubes and Hollow Particles with Enhanced Lithium-Storage Properties. Angew. Chem. Int. Ed., 2016, 55, 7427-7431. Link

SiGe


39. BH Lu, J Zhou, YQ Song, HL Wang, W Xiao*, DH Wang*. Molten-salt treatment of waste biomass for preparation of carbon with enhanced capacitive properties and electrocatalytic activity towards oxygen reduction. Faraday Discuss.,2016, 190, 147-159. Link


38. W Xiao, DH Wang*. Rare metals preparation by electro-reduction of solid compounds in high-temperature molten salts. Rare Met., 2016, 35, 581-590. (Invited Review) Link


37. FF Huang, BW Zhou, H Xiao, W Xiao*, Core-shell Mn3O4/birnessite-MnO2 hierachical structure with enhanced adsorption towards methylene blue. Funct. Mater. Lett., 2015, 09, 1650020. Link


36. J Zhou, H Xiao, BW Zhou, FF Huang, SB Zhou, W. Xiao*, DH Wang*. Hierarchical MoS2–rGO nanosheets with high MoS2 loading with enhanced electro-catalytic performance. Appl. Surf. Sci., 2015, 358, Part A, 152-158. Link mos2-rgo


35. BH Lu, ZA Xiao, H Zhu, W Xiao*, WL Wu, DH Wang*. Enhanced capacitive properties of commercial activated carbon by re-activation in molten carbonates. J. Power Sources 2015, 298, 74-82. Link enhanced


34. L Yu, B Guan, W Xiao*, XW Lou*. Formation of Yolk-Shelled Ni-Co Mixed Oxide Nanoprisms with Enhanced Electrochemical Performance for Hybrid Supercapacitors and Lithium Ion Batteries. Adv. Energy Mater., 2015, 5, 1500981. (ESI Highly Cited Paper) Link Yolk-Shelled


33. BH Lu, J Zhou, YY Li, W Xiao*, HL Wang*. Comparison on carbon coating over silica spheres with different carbon sources. Mater. Technol., 2015, 30, A94-A98. Link


32. HY Yin, DY Tang, XH Mao, W Xiao*, DH Wang*. Electrolytic calcium hexaboride for high capacity anode of aqueous primary batteries. J. Mater. Chem. A, 2015, 3, 15184-15189. Link electrolytic calcium


31. W Xiao, P Zhou, XH Mao, DH Wang*. Ultrahigh aniline-removal capacity of hierarchically structured layered manganese oxides: trapping aniline between interlayers. J. Mater. Chem. A, 2015,3, 8676-8682. Link ultrahigh


30. HY Yin, W Xiao*, XH Mao, H Zhu, DH Wang*. Preparation of a porous nanostructured germanium from GeO2 via a “reduction–alloying–dealloying” approach. J. Mater. Chem. A, 2015,3, 1427-1430. Link 2


29. FY Xu, W Xiao*, B Cheng, JG Yu. Direct Z-scheme anatase/rutile bi-phase nanocomposite TiO2 nanofiber photocatalyst with enhanced photocatalytic H2-production activity. Int. J. Hydrogen Energy, 2014, 39, 15394-15402. (ESI Highly Cited Paper) Link Z-scheme


28. Y Xu, HC Jiang, XX Li, H Xiao, W Xiao*, T Wu*, Synthesis and characterization of Mn-based composite oxides with enhanced electrocatalytic activity for oxygen reduction. J. Mater. Chem. A, 2014, 2, 13345-13351. Link Mn-based


27. JG Yu*, YF Yu, P Zhou, W Xiao*, B Cheng. Morphology-dependent photocatalytic H2-production activity of CdS. Appl. Catal. B, 2014, 156–157, 184-191. (ESI Hot Paper) Link CdS


26. Q Li, H Meng, JG Yu*, Xiao W*, YQ Zheng, J Wang. Enhanced Photocatalytic Hydrogen-Production Performance of Graphene–ZnxCd1−xS Composites by Using an Organic S Source. Chem. Eur. J., 2014, 20, 1176-1185. (ESI Highly Cited Paper) Link ZnCdS


25. JG Yu*, K Wang, W Xiao*, B Cheng. Photocatalytic reduction of CO2 into hydrocarbon solar fuels over g-C3N4–Pt nanocomposite photocatalysts. Phys. Chem. Chem. Phys., 2014,16, 11492-11501. (ESI Highly Cited Paper) Link g-C3N4-Pt


24. W Xiao, DH Wang*. The electrochemical reduction processes of solid compounds in high temperature molten salts. Chem. Soc. Rev., 2014,43, 3215-3228. (Invited Review) Link review1


23. Y Wang, JG Yu*, W Xiao*, Q Li. Microwave-assisted hydrothermal synthesis of graphene based Au–TiO2 photocatalysts for efficient visible-light hydrogen production. J. Mater. Chem. A, 2014, 2, 3847-3855. (ESI Highly Cited Paper) Link Au-TiO2


22. JG Yu*, XY Li, ZH Xu, W Xiao*. NaOH-Modified Ceramic Honeycomb with Enhanced Formaldehyde Adsorption and Removal Performance. Environ. Sci. Technol., 2013, 47 (17), 9928-9933. Link NaOH-modified


21. P Zhou, XF Zhu, JG Yu*, W Xiao*. Effects of Adsorbed F, OH, and Cl Ions on Formaldehyde Adsorption Performance and Mechanism of Anatase TiO2 Nanosheets with Exposed {001} Facets. ACS Appl. Mater. Interfaces, 2013, 5 (16), 8165-8172. Link FOHCl


20. ZH Xu, JG Yu*, W Xiao. Microemulsion-Assisted Preparation of a Mesoporous Ferrihydrite/SiO2 Composite for the Efficient Removal of Formaldehyde from Air. Chem. Eur. J., 2013, 19, 9592-9598. Link Microemulsion


19. W Xiao, WT Liu, XH Mao, H Zhu, DH Wang*. Chemical mixing in molten-salt for preparation of high-performance spinel lithium manganese oxides: Duplication of morphology from nanostructured MnO2 precursors to targeting materials. Electrochim. Acta, 2013, 88, 756-765. Link


18. RX Chen, JG Yu*, W Xiao*. Hierarchically porous MnO2 microspheres with enhanced adsorption performance. J. Mater. Chem. A, 2013,1, 11682-11690. Link porous MnO2


17. JG Yu*, SH Wang, JX Low, W Xiao*. Enhanced photocatalytic performance of direct Z-scheme g-C3N4–TiO2 photocatalysts for the decomposition of formaldehyde in air. Phys. Chem. Chem. Phys., 2013,15, 16883-16890. (ESI Highly Cited Paper) Link g-C3N4


16. JG Yu*, Y Wang, W Xiao*. Enhanced photoelectrocatalytic performance of SnO2/TiO2 rutile composite films. J. Mater. Chem. A, 2013,1, 10727-10735. Link SnO2


15. W Xiao, XB Jin*, GZ Chen*. Up-scalable and controllable electrolytic production of photo-responsive nanostructured silicon. J. Mater. Chem. A, 2013,1, 10243-10250. Link up-scale


14. W Xiao, WT Liu, XH Mao, H Zhu, DH Wang*. Na2SO4-assisted synthesis of hexagonal-phase WO3 nanosheet assemblies with applicable electrochromic and adsorption properties. J. Mater. Chem. A, 2013,1, 1261-1269. Link Na2SO4


13. ZY Wang, ZC Wang, WT Liu, W Xiao*, XW Lou*. Amorphous CoSnO3@C nanoboxes with superior lithium storage capability. Energy Environ. Sci., 2013,6, 87-91. (ESI Hot Paper, Highly Cited Paper) Link CoSnO3


12. W Xiao, X Wang, HY Yin, H Zhu, XH Mao, DH Wang*. Verification and implications of the dissolution–electrodeposition process during the electro-reduction of solid silica in molten CaCl2. RSC Adv., 2012,2, 7588-7593. Link verification


11. W Xaio, D Hu, C Peng, GZ Chen*. Interfacial Synthesis: Amphiphilic Monomers Assisted Ultrarefining of Mesoporous Manganese Oxide Nanoparticles and the Electrochemical Implications. ACS Appl. Mater. Interfaces, 2011, 3 (8), 3120-3129. Link Amphiphilic


10. W Xiao, JS Chen, XW Lou*. Synthesis of octahedral Mn3O4 crystals and their derived Mn3O4–MnO2 heterostructures via oriented growth. CrystEngComm, 2011,13, 5685-5687. Link Mn3O4


9. W Xiao, JS Chen, Q Lu, XW Lou*. Porous Spheres Assembled from Polythiophene (PTh)-Coated Ultrathin MnO2 Nanosheets with Enhanced Lithium Storage Capabilities. J. Phys. Chem. C, 2010, 114 (27), 12048-12051. Link PTh


8. W Xiao, X Hui, YHF Jerry, L Li*. Electrophoretic-deposited CNT/MnO2 composites for high-power electrochemical energy storage/conversion applications. Phys. Scr.,2010, 2010, 014008. Link


7. W Xiao, XB Jin*, Y Deng, DH Wang, GZ Chen*, Rationalisation and optimisation of solid state electro-reduction of SiO2 to Si in molten CaCl2 in accordance with dynamic three-phase interlines based voltammetry. J. Electroanal. Chem., 2010, 639, 130-140. Link


6. W Xiao, JS Chen, CM Li, R Xu, XW Lou*. Synthesis, Characterization, and Lithium Storage Capability of AMoO4 (A = Ni, Co) Nanorods. Chem. Mater., 2010, 22 (3), 746-754. Link AMoO4


5. W Xiao, DL Wang, XW Lou*. Shape-Controlled Synthesis of MnO2 Nanostructures with Enhanced Electrocatalytic Activity for Oxygen Reduction. J. Phys. Chem. C, 2010, 114 (3), 1694-1700. (ESI Highly Cited Paper) Link Shape-controlled


4. W Xiao, H Xia, JY H Fuh, L Lu*. Growth of single-crystal α-MnO2 nanotubes prepared by a hydrothermal route and their electrochemical properties. J. Power Sources, 2009, 193, 935-938. (ESI Highly Cited Paper) Link


3. W Xiao, H Xia, JYH Fuh, L Lu*. Electrochemical Synthesis and Supercapacitive Properties of ε-MnO2 with Porous/Nanoflaky Hierarchical Architectures. J. Electrochem. Soc., 2009, 156, A627-A633. Link


2. W Xiao, XB Jin*, Y Deng, DH Wang, GZ Chen*. Three-Phase Interlines Electrochemically Driven into Insulator Compounds: A Penetration Model and Its Verification by Electroreduction of Solid AgCl. Chem. Eur. J., 2007, 13,604-612. Link three-phase


1. W Xiao, XB Jin, Y Deng, DH Wang, XH Hu, GZ Chen. Electrochemically Driven Three-Phase Interlines into Insulator Compounds: Electroreduction of Solid SiO2 in Molten CaCl2. ChemPhysChem, 2006, 7, 1750-1758. Link solid sio2

Share this Page